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ABSTRACT

H
Consider n jobs which have to be performed sequentially in time.

- 
- There are external shocks which occur according to a nonhomogenous

Poisson process. If a shock occurs during the performance of a job,
then work on that job ends and work on the next one co ences. A
job is successfully performed if no shocks occur during its execution
time. We consider such problems as maximizing:~

( )(I)The expected number of successf ul job performances;
( ~‘~~The length of t ime until no jobs remain ;~~c&

(i i~~) The expected total reward earned ; where a reward R~ - ~~~~~~~~~~

is obtained upon successful completion of job i .

We determine conditions on the distribution of job performances which
result in simple policies being optimal.

I 



- ~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--

SCHEDULING JOBS SUBJECT TO NONHOMOGENEOUS POISSON SHOCKS

by

Michael L. Pinedo and Sheldon M. Ross

1. INTRODUCTION AND SUMMARY

Suppose that n jobs have to be performed sequentially in time —

the ith job requiring a random time X~ for its execution. In addition,

suppose there are external shocks which occur according to a non-

homogeneous Poisson process. If a shock occurs during the performance

of a job then work on that job ends and work on the next one co=ences.

A job is said to be successf ully performed if no shocks occur during its

execution time.

We are interested in determining the job schedule that maximizes

the expected number of successful job performances. However, as a means

to determining this, we shall first consider the related problem of

stochastically maximizing the length of time until all jobs are finished

(either successfully or by shocks). This related problem is of in-

dependent interest far , by interpreting the n jobs as being n spares

in a stockpile, it becomes one of stochastically maximizing the life of

a stockpile of spares which are subject to shocks which kill any spare

in use when the shock occurs.

The related problem, without any assumption of external shocks,

but under the condition that the lifetime of a spare depends on its t me

of installation has previously been studied in ( 1] and [ 2]. Brown and

Solomon ( 2 1 established optimal schedules for certain cases in which the

s lifetimes of the spares are monotone likelihood ratio ordered.
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In this paper we consider a more general ordering than monotone

likelihood ratio ordering. This ordering, which we call failure rate

ordering, implies stochastic ordering. We show in Section 3 that if the

lifetime distributions are failure rate ordered and if the intensity

function of the Poisson process is increasing, then in the related stock-

pile problem, the strategy of issuing spares is decreasing order of their

means stochastically maximizes the system life and in the original prob-

lem, the strategy of issuing jobs in increasing order of their means

maximizes the expected number of successful jobs. Also, when the intensity

function of shocks is decreasing, the optimal strategy is to reverse the

order given above.

In Section 4 we suppose that the execution time of job i is ex-

ponentially distributed with rate A 1 and that a reward R1 is earned

if job i is successfully performed, I — 1, . . . ,  n • We show that

if the intensity function of shocks is increasing then 1,2, . . . ,  a

is the optimal strategy if both R1 and A~R1 are decreasing in i

If the intensity function of shocks is decreasing then n,n — 1, .. . ,  1

is the optimal strategy if both R1 and A1R~ are decreasing and

is increasing in I . 

~~~~~~~~~~
i t _  

.4
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2. DEFINITIONS AND PRELIMINARY RESULTS

Two random variables X1 and X2 are said to be increasing failure

rate ordered if

~ 
(t)/F (s) > ~ (t )/ ~~ (s) for all $ < t3. 1 2 2

where ~~~(t) — P{X1 > t} . Given a collection of pairwise failure rate

ordered random variables we can reorder them such that X1 and are

increasing failure rate ordered if i < j  . We call such a collection

increasing failure rate ordered.

If the X~ are continuous with densities f~ then the failure rate

function ri of X1 is defined by r~ (t)  — f 1(t )/~ 1(t) . The following

lemma justifies our terminology.

Leimna 1:

The continuous random variables X
1 

and X2 are increasing failure

rate ordered if and only if r1(t) < r2(t) for all t

Proof:

Using the well known identity

P(t)  — exp [_jr(Y)dY]

we have that

exp 
[-Jr i(Y)dY]

~~~~~~~~~~~~~~~ _ _ _ _ _
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and so if X1 and are increasing failure rate ordered then

fr1(Y)dY <fr2(Y)dY for all $ , t

implying that r1(y) 
< r2(y) . The converse also follows by reversing

the argument. I I

Two continuous random variables X1 and X2 are said to be increasing

monotone likelihood ratio ordered if for s < t

f 2 (t ) / f 1(t) > f2(s)/f1(s)

From the definition of monotone likelihood ratio ordering we have

f(f2(t)fi(s) - f2(s)f1(t))dt > 0 for all s

or, equivalently

ri(s) > r 2(s)

As it easily follows that failure rate ordering implies stochastic

( t
ordering from the identity F(t) — exp ~— fr(s)ds~ we see that monotone

likelihood ratio ordered ~ failure rate ordered - stochastic ordered. 

.-
~~~

- .-~
--- - -

~~~~~~~~~~~~~~~
- ----- _ _  _ _ _  _ _
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3. RESULTS

We consider a stockpile of a spares in which the 1th spare has

lifetime X1 . We have a one component system subject to shocks which

occur according to a nonhomogenous Poisson process with intensity function

v(t) . A spare has to be replaced when it fails as the result of its

internal lifetime or as the result of a shock.

Theorem 1:

Given a spares with life times X
1~ • • • ~ 

X~ which are increasing

failure rate ordered and given that the rate v(t) of the shocks is

increasing (decreasing) over time, then the schedule 1,2, . . .,  a

(n,n — 1, . . . ,  1) stochastically maximizes the lifetime of the system.

Proof:

We will prove only the case where v(t) is increasing over time,

as the proof for v(t) decreasing is identical.

First we consider the case a — 2 . To show the probability that system

life will last until time t is larger using the alleged optimal schedule,

we condition on the number of shocks that occur before time t . If there

are zero shocks, both schedules will yield the same probability. If there

are two or more shocks before time t , the probability will be zero under

both schedules. So it suffices to consider the case in which only one

shock occurs before time t , because only then will there be a difference

between the two schedules. If P1(x) denotes the probability that this

x t
shock occurs before time x (x < t )  , then P

1
(x) — f  v(s)ds/ f  v(s)ds

0 0

Letting ‘
~~ ~~~ 

denote the conditional probability that the system

will function until time t , given only one shock occurs and using schedule

1,2 (2,1) , then

1~~. .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , ~~~~~~~~ - -- . , ,-~~~~~~ —-~~~~ -- .~~~~~-
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a~ _ f~ 1(x)P2(t 
- x)v(x)dx/fv(s)ds

and

~2 
_ f~ 2(x)~1(t 

- x)v(s)ds/fv(s)ds .

Hence we must show

t/2f (~~~(x)~~2 (t — x) — F2(x)F
1
(t — x)]v(x)dx

> f [~2(x)P~(t - x) - P1(x)~2(t - x)]v(x)dx

a
or, equivalently,

f [~2(x)~~(t - x) - ~2(t - x)~1(x)j[v(t - x) - v(x)]dx > 0
t/2

Now in the range of integration v(x) < v(t—x) , so the inequality holds if

— x) < P
2(x)~1(t 

— x)

which follows since and are increasing failure rate ordered.

This completes the proof for the case a = 2

We will now show that system life under arbitrary schedule

. ..,  m ’ is stochasticall y larger than system life under

schedule 2’ , l’ ,3’ , ... ,  m’ if t (X 1,) > E(X 2 1) . Let t~ be the t ime

epoch of shock 1 • Condition on t~ , i — 1,2,3, ... , and on the life-

times of the spares 3’,4’, . . . ,  m’ . Now let G(s) be the conditional 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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lifetime of the system given that the third spare is installed at time

epoch s and the subsequent spares are installed according to the schedule

3’ ,4’ , ...,  in’ . We will show that C(s) + s . We first note that the

third spare (with lifetime X31) will be installed at t ime epoch s

Suppose the next shock occurs at time epoch w . Then the next spare

will be installed at time epoch s + mm (X3, ,w — s) . This last expression

is nondecreasing in s . Repeating this argument proves C(s) + s

Prom the case n — 2 , we know the time the third spare will be ins talled

is stochastically larger under schedule l’ ,2’ . As stochastic ordering is

preserved under monotone transformations the conditional system life under

schedule l’,2’,3’, . . . ,  in’ is stochastically larger than under schedule

2’ ,l’ ,3’ , . . .,  in ’ . Unconditioning gives the desired result.

From this we easily can obtain a more general result: the system life

under arbitrary schedule l’ ,2 ’ , . . . ,  i’ ,j ’ ,k ’ , .. .,  n ’ is stochastically

4 
larger than under schedule l’,2’, .. .,  i’ ,k’ , j t , .. . ,  a’ if E(X~ 1) > E(X,~,)

This can be shown by conditioning on the time epoch spare i’ dies and

using the preceding results.

As any schedule can be transformed through pairvise switches into

schedule 1,2 , .. . ,  n in such a way that each pairwise switch gives an

improvement in the lifetime of the system , it is clear that schedule

1,2, . . . ,  a is the optimal schedule. I

In exactly the same way, we can also prove that the reverse schedule

to that given in Theorem 1 stochastically minimizes the lifetime of the

system. That is, we have

~I;IL ~~~~~~~~. .. _~ . _ _ _ _
~~~~~~~~~~~~~~~~~~~~~~~_I _ ._1i 
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Corollary 1:

Under the conditions of Theorem 1, if v(t) is increasing (decreasing)

then the schedule n ,n — 1, .. . ,  2 ,1 (1,2 , .. . ,  a — l,n) stochastically

minimizes the lifetime of the system.

We are now in position to prove

Theorem 2:

Given n spares with lifetimes X1, . . . ,  X1~ 
which are increasing

failure rate ordered and given that the intensity rate v ( t )  of shocks

.~s increasing (decreasing) over time, then the schedule n,a — 1, . . . ,  1

(1,2, ...,  n) maximizes the expected number of successful job performances.

Proof:

Let N (t )  denote the number of shocks by time t and for any

schedule ~v let L
~ 

denote the system life under policy ii . Now

t )

N (t) — fv(s)ds~ is a Martingale with 0 mean and as L,~ is a stopping
0

time having a finite expected value , it follows from Martiagale theory

that , for any schedule ‘r

L

E[N(L ) - f v(s)ds] =

or

L

E(N(L~)] = 

E[f 
v(3)ds]

- .~~~~~~~~ —~~~~~~~~~ ~1 ~~~::~i -~~
--.. --- - - -~~~~~~~~~~~~~~~~~~~~ -~~~- -~~~~-~~-
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Now letting irs’ denote the allegedly optimal policy it follows from

Corollary 2 that L
~* 

is stochastically smaller than L~ and as

x
f v(s)ds is a monotone function of x it follows that
0

L

B [j v(s)ds ] < E [t v(s)ds ]
implying that

E[N(L *) < E [(L~ ) ]

The result now follows since N (L
11

) is just equal to n minus the

number of successful job performances . I~I

Remarks:

1. It may be assumed that each t ime a spare (or job) is installed

the decision—maker knows the lives of the previous installed

spares (or jobs ) . Conceivably he may take this into account

at each stage in deciding which spare to install next. We claim

that our schedules remain optimal even among the larger class

of policies which allow the decision—maker to operate sequentially.

To see this we argue as follows: If there is one spare left ,

there is no decision to be made. When there are two spares left,

our claim is obviously true. When there are three spares left,

we know that whichever spare is installed , independent of its

lifetime, the last two spares will be installed according to

our imai policy . The objective is, to choose the spare which



r - 
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combined with the last two spares (ordered according to our

optimal schedule) gives the largest total lifetime. So if we

operate sequentially, our decision with three spares left will

result in the same schedule as when we do not operate sequen—

tially. Repeating this argument for a larger number of spares

completes the proof.

2. If the distributions of the lifetimes of the spares are merely

stochastically ordered, then the schedules described in

Therems 1 and 2 are not necessarily optimal. We give the

following counterexample. Let

for 0 < x < 2
v(x) —~~

(0 x > 2

and suppose we have 2 spares with lifetimes X1 and X 2

which are such that

1 with probability 0.5
X-

3 with probability 0.5

2 with probability 0.5
x2 —• (3 with probability 0.5

Obviously X2 is stochastically larger than X1 , but X1

and are not failure rate ordered. The schedule which

maximizes the expected lifetime of the system is 2,1 • This

can be easily checked by considering the case of only one

shock occurring in (0,2] , which due to the low rate of

shocks is the dominant probability.

——.-— -.- -“ -- ----- -.-- -“••-- . 

- -

-.

-

-.- .- - .-- - -- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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3. One possibility we have not allowed for is f or a still func-

tioning spare to be replaced and kept in the stockpile for later

use. Let us assume in this case that the remaining life of

the spare is not changed by such a preemption. Then our

results would go through only under additional conditions.

Specifically to prove that the given schedule in Theorem 1 remains

optimal and that a preemption is never optimal we would have to

assume that the component life distributions all have decreasing

failure. tates in the case where v(t) is increasing and all

have increasing failure rates when v(t) is decreasing.

Similarly in Theorem 2 we would need that the spares all had

increasing (decreasing) failure rates in the case where v(t)

increases (decreases). The proof follows from noting that under

the presumed ordering, at any time a preemption is contemplated

the remaining lifetime of the spare to be preempted is still

ordered among the remaining spares in the same way as originally.

The above can be made the first step of an inductive proof which

proves the result when at most k preemptions are allowed.

4. Since many ind ividual spares are built up of smaller parts it

may be worthwile to note that a k—of—n system in which each

component life is independent and has the same life distribution

F would have a failure rate order relationship to a similar

k—of—n having component life distributions all equal to G

whenever F and C have that failure rate ordered relationship.

5. Both problems could also be analyzed using the approach of Brown and

Solomon [ 2  1. Using their lemma 1 on the case n — 2 results in

a very simple proof. However, this proof is only valid for monotone

likelihood ratio ordered and not failure rate ordered distributions.

k

~

--

~ 

. • .  - •~~~~- -

•
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4. EXPONENTIAL LIFETIMES AND REWARDS

In this section we suppose that , the execution t ime of job 1

is exponentially distributed with rate , i — 1, ..., a . In addition,

we suppose that a reward R
1 is earned if job I is successfully per-

formed.

Denote by T~ the length of time that work is done on job i , i.e.,

it is the length of time from the beginning of work on job i until work

on that job ends either because it is completed successfully or a shock

occurs . We then have the following result from Derinan—Lieberman—Ross

(Page 559 of [3D .

Lemma 2:

For any scheduling policy it

B [Total Reward] — 
~ 

A
~
R
i

E [T
i
]

i—l

In words , Lemma 2 says that the expected return is the same if one received

rewards at a constant rate A
1R1 

whenever job I was being performed .

Lemma 3:

If v(t )  is increasing and if A 1 < A~ and A
i
R
i 

= max A
k
R
K , then

the total expected reward under schedule i,j, k1, . . .,  k~_2 is larger than

the total expected reward under schedule j,i,k1, ~~~~~~ 
k~_2 where

. . .,  k~_2 can be any permutation of the remaining a — 2 jobs.



.-.- -~~~ ---

Proof:

Schedule i,j,k1, . . .,  k~~2 will be denoted by ii , and

j,i,k1, ~~~~~~ 
k~_2 by it ’ . According to Lemma 2, it suffices to show

that

A~ R1E ( T ~ ] + A R E [ T ] + :~: 
X
k
Bk E r[Tk]

(1)

~~. A~R~E , [T~] + A~ R
J

E ~(T~ J + 
~ 

Ak RI~~
E
~~ [Tk ]

Nov it follows from the proof of Theorem 1, that each of the jobs

... ,  k 2 will be started at a stochastically earlier time under

it ’ than under it . Hence as v(t) is increasing we have that

EW IT
J

] < E
~

, ( T j ] and
(2)

EW [Tk] 
< E

W I[Tk] 
, i — 1, ... ,  a — 2

But from Theorem 1, we have that

E
~
[Ti] + E1~

[T
j
] + 

~~~ 
E4T~~]

(3)
n-2

> E ~ ,[TjJ + EW,[T ] + 
~ 

E 1ITkk—i L i

Nov (2) and (3) in conjunction with the condition A~R~ > A
kR.K 

for

all k establishes ( l ) . I I

We now have

4 

. 

~~~~~~~~~~~~~~~~~~~
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Theorem 3:

• If v ( t )  is increasing and if Ri and A1R1 are decreasing, then

1,2 , . . . ,  a is the optimal schedule.

Proof:

The proof is by contradiction. Consider any strategy which is not

in decreasing order of R . Suppose the job with the highest value

of R (spare 1) is not scheduled first. Suppose the job which imme-

diately precedes job 1 is job k

We consider two cases :

Case 1:

> R.~ , A1 
< A

k 
and A1R1 > AkRK

According to Lemma 3, interchanging job 1 and job k increases

the total expected reward .

Case 2:

> R.~ and A1 > A
k 

. Let P
1
(it) denote the probability that

job i is successfully performed under the original schedule and let

P~ (lr ’) denote the probability that job 1 is successfully performed

under the schedule obtained after performing the pairwise switch between

jobs k and 1 . Now since v(t) is increasing, we have that

P1(ir) > P ~ (it’)

and from Theorem 2 , we have

P1(ir) + 
~~~~ 

> P
1
(n ’) + Pk

(1T ’)

A 
_ _
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Since R1 
> , it follows from the above that

P
1
(,r)R

1 
+ P

k
(1r)R.

~ 
> P1(ir ’) R 1 + P

k
(ir ’)R

k

According to Theorem 1, all the jobs scheduled after jobs 1 and k

start their execution stochastically earlier under schedule it ’

Therefore, the probability of each of these jobs being successfully

performed is larger under it ’ . Thus, interchanging job k and job

increases the total expected reward . So it is clear that in any case

the original schedule could not be optimal.

If the schedule is not 1,2 , . . .,  a we always will be able to

find a job with a reward bigger than each of the jobs following it

and the one preceding it. Performing a pairwise switch increases the

total expected reward. I~
One remark should be made here. It is not necessarily true that

if v(t) is increasing, then the optimal schedule is to do jobs in

decreasing value of R . To obtain a counterexainple, suppose that

A
1R1 

— A~R~ for all I , j . Hence, from Lemma 2 and Theorem 1, it follows

that the optimal policy is to schedule jobs in decreasing order of A
1 

; and

• therefore, all policies are not equivalent as would be the case if the con-

jecture were true.

We now consider the case v ( t )  decreasing.

Theorem 4:

I
If v(t) is decreasing and if R~ and A

iRi 
are increasing and

• A
i is decreasing, then 1,2, ... , a is the optimal schedule.

~~~~~~~ —- - ------ ---- .-- • • .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Proof:

The proof is similar to the proof of Case 2 in Theorem 3 . 11

Again, in this case, schedule 1,2, . . . ,  a is not necessarily

optimal under weaker sufficient conditions. Counterexainples can be

found easily.

_L 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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